Vendredi 19 octobre 2012

Test n°1 (corrigé)

Durée : une heure.

DOCUMENTS, CALCULETTES ET PORTABLES NON AUTORISÉS.

Questions de cours.

Question de cours 1. Soit E un \mathbb{R} -espace vectoriel.

1. Qu'appelle-t-on distance sur E?

Une distance sur E est une application d de E^2 dans \mathbb{R}_+ telle que

- d(x,x) = 0 pour tout $x \in X$ (d nulle sur la diagonale de X^2);
- d(x,y) = d(y,x) pour tout $(x,y) \in X^2$ (d symétrique);
- d(x,y) > 0 pour tout $(x,y) \in X^2$ tel que $x \neq y$ (d séparée);
- $d(x,y) \le d(x,z) + d(z,y)$ pour tout $(x,y,z) \in X^3$ (inégalité triangulaire).
- 2. Qu'appelle-t-on norme sur E?

Une norme sur E est une application N de E dans \mathbb{R}_+ telle que

- $N(\mathbf{0}_E) = 0$, où $\mathbf{0}_E$ désigne le vecteur nul de E;
- N(x) > 0 pour tout $x \in X$ tel que $x \neq \mathbf{0}_E$ (N séparée);
- N(tx) = |t|N(x) pour tout $(t, x) \in \mathbb{R} \times X$ (N absolument homogène);
- $N(x+y) \le N(x) + N(y)$ pour tout $(x,y) \in X^2$ (inégalité triangulaire).
- 3. Soit $\|\cdot\|$ une norme sur E. Montrer qu'il existe une distance d sur E telle que $\|x\| = d(\mathbf{0}_E, x)$ pour tout $x \in E$, où $\mathbf{0}_E$ désigne le vecteur nul de E.

Notons d l'application de E^2 dans \mathbb{R}_+ telle que $d(x,y) = \|x-y\|$ pour tout $(x,y) \in E^2$. Vérifions que d est une distance. d est nulle sur la diagonale car la norme du vecteur nul est nulle. d est symétrique car un vecteur et son opposé ont même norme. d est séparée car, si $(x,y) \in E^2$ et $x \neq y, x-y \neq \mathbf{0}_E$ de sorte que $d(x,y) = \|x-y\| > 0$. Si $(x,y,z) \in E^3$, $d(x,y) = \|x-z+z-y\| \le \|x-z\| + \|z-y\| = d(x,z) + d(z,y)$. Enfin, d satisfait bien la relation souhaitée : $\|x\| = d(\mathbf{0}_E,x)$ pour tout $x \in E$.

4. Donner un exemple d'un \mathbb{R} -espace vectoriel E et d'une distance d tels que $x\mapsto d(\mathbf{0}_E,x)$ ne définit pas une norme sur E.

Considérons un \mathbb{R} -espace vectoriel E non réduit au seul vecteur nul et notons δ la distance discrète sur E: pour tout $(x,y) \in E^2$, $\delta(x,y) = 0$ si x = y, 1 sinon. Par hypothèse, il existe $x_0 \in E \setminus \{\mathbf{0}_E\}$. Comme $2x_0 \neq \mathbf{0}_E$, $\delta(\mathbf{0}_E, 2x_0) = 1 \neq 2\delta(\mathbf{0}_E, x_0)$. Ceci prouve que $x \mapsto \delta(\mathbf{0}_E, x)$ ne définit pas une norme sur E.

Question de cours 2. Soient (E_1,d_1) et (E_2,d_2) des espaces métriques et f une application de E_1 dans E_2 . Définir, successivement en français courant et à l'aide de quantificateurs, chacune des propriétés suivantes :

1. f est continue de (E_1, d_1) dans (E_2, d_2) ssi, pour tout élément x_1 de E_1 , toute d_2 -boule ouverte centrée en $f(x_1)$ contient l'image par f d'une d_1 -boule ouverte de centre x_1 , i.e. ssi l'un des deux énoncés équivalents suivants est satisfait :

$$\forall x_1 \in E_1 \ \forall \epsilon \in \mathbb{R}_+^* \ \exists \eta \in \mathbb{R}_+^* \ f(B_{d_1}(x_1, \eta)) \subset B_{d_2}(f(x_1), \epsilon)$$

$$\tag{0.1}$$

$$\forall x_1 \in E_1 \ \forall \epsilon \in \mathbb{R}_+^* \ \exists \eta \in \mathbb{R}_+^* \ \forall x_1' \in E_1 \ d_1(x_1, x_1') < \eta \Rightarrow d_2(f(x_1), f(x_1')) < \epsilon \quad (0.2)$$

2. f est uniformément continue de (E_1, d_1) dans (E_2, d_2) ssi, pour tout $\epsilon \in \mathbb{R}_+^*$, il existe $\eta \in \mathbb{R}_+^*$ tel que les éléments de E_1 à d_1 -distance mutuelle $< \eta$ ont des images par f à d_2 -distance mutuelle $< \epsilon$, i.e.

$$\forall \epsilon \in \mathbb{R}_+^* \ \exists \eta \in \mathbb{R}_+^* \ \forall x_1 \in E_1 \ \forall x_1' \in E_1 \ d_1(x_1, x_1') < \eta \Rightarrow d_2(f(x_1), f(x_1')) < \epsilon \quad (0.3)$$

3. f est Lipschitzienne de (E_1, d_1) dans (E_2, d_2) ssi il existe une constante $C \in \mathbb{R}_+$ telle que la distance des images par f de deux éléments arbitraires de E_1 est majorée par C fois leur distance mutuelle, i.e.

$$\exists C \in \mathbb{R}_{+}^{*} \ \forall (x_{1}, x_{1}') \in E_{1}^{2} \ d_{2}(f(x_{1}), f(x_{1}')) \leq C d_{1}(x_{1}, x_{1}')$$

$$\Leftrightarrow \sup_{(x_{1}, x_{1}') \in E_{1}^{2}, x_{1} \neq x_{1}'} \frac{d_{2}(f(x_{1}), f(x_{1}'))}{d_{1}(x_{1}, x_{1}')} < +\infty \quad (0.4)$$

Donner un exemple simple de fonction continue mais non uniformément continue et d'une fonction uniformément continue mais non lipschitzienne.

La fonction e_3 de \mathbb{R} dans \mathbb{R} telle que $e_3(x) = x^3$ pour tout $x \in \mathbb{R}$ est continue sur \mathbb{R} mais non uniformément continue. En effet, pour tout $n \in \mathbb{N}^*$, si $x'_n = n + \frac{1}{n}$ et $x_n = n$,

$$e_3(x_n') - e_3(x_n) = \frac{1}{n} \left((n + \frac{1}{n})^2 + (n + \frac{1}{n})n + n^2 \right) = 3n \left(1 + \frac{1}{n^2} + \frac{1}{3n^3} \right) \ge 3.$$
 (0.5)

Ainsi, $(x'_n)_{n\in\mathbb{N}}$ et $(x_n)_{n\in\mathbb{N}}$ vérifient $\lim |x'_n-x_n|=0$ et $\inf_{n\in\mathbb{N}} |e_3(x'_n)-e_3(x_n)|\geq 3$, ce qui prouve que e_3 n'est pas uniformément continue.

La fonction $\sqrt{\cdot}$ de \mathbb{R}_+ dans \mathbb{R}_+ est uniformément continue mais non Lipschitzienne. D'une part, si $0 \le x < y$, $0 < \sqrt{y} - \sqrt{x} \le \sqrt{y - x}$, d'où l'on déduit aisément l'uniforme continuité de $\sqrt{\cdot}$. D'autre part, pour tout $n \in \mathbb{N}^*$,

$$\frac{\sqrt{\frac{1}{n}} - \sqrt{0}}{\frac{1}{n} - 0} = \sqrt{n} \to +\infty. \tag{0.6}$$

Ainsi, $\sqrt{\cdot}$ ne peut être Lipschitzienne.

Question de cours 3. On considère le \mathbb{R} -espace vectoriel $\mathbb{R}[X]$ des polynômes à coefficients réels. Donner trois normes sur $\mathbb{R}[X]$, dont deux au moins sont équivalentes.

L'ensemble $\mathbb{R}[X]$ des polynômes à coefficients réels en l'indéterminée X est un \mathbb{R} -espace vectoriel muni de la loi additive et de la multiplication par les scalaires réels. Précisément, à tout polynôme $P \in \mathbb{R}[X]$, on associe une suite $(a_k)_{k \in \mathbb{N}} \in \mathbb{R}^{(\mathbb{N})}$ de support fini, i.e. $\{k \in \mathbb{N} \mid a_k \neq 0\}$ est une partie finie de \mathbb{N} , telle que $P = \sum_{k \in \mathbb{N}} a_k X^k$. Si $P \neq 0$, l'entier $\{k \in \mathbb{N} \mid a_k \neq 0\}$ est le degré de P. Pour tout $(a_k)_{k \in \mathbb{N}} \in \mathbb{R}^{(\mathbb{N})}$ et $(b_k)_{k \in \mathbb{N}} \in \mathbb{R}^{(\mathbb{N})}$, notant $P = \sum_{k \in \mathbb{N}} a_k X^k$ et $Q = \sum_{k \in \mathbb{N}} b_k X^k$, on définit

$$P + Q = \sum_{k \in \mathbb{N}} (a_k + b_k) X^k$$

et, pour tout $t \in \mathbb{R}$,

$$t.P = \sum_{k \in \mathbb{N}} t a_k X^k.$$

Il est bien connu que $(\mathbb{R}[X],+,.)$ est un \mathbb{R} -espace vectoriel.

Notons N_1 , N_{∞} , ν_{∞} et ν'_c $(c \in [0,1])$ les applications de $\mathbb{R}[X]$ dans \mathbb{R}_+ telles que, si $P \in \mathbb{R}[X]$ s'écrit $\sum_{k \in \mathbb{N}} a_k X^k$ où $(a_k)_{k \in \mathbb{N}} \in \mathbb{R}^{(\mathbb{N})}$,

$$\begin{split} N_{\infty}(P) &= \max_{k \in \mathbb{N}} |a_k| \\ \nu_{\infty}(P) &= \max\{|P(t)| \mid t \in [0,1]\} \end{split} \qquad N_1(P) = \sum_{k \in \mathbb{N}} |a_k| \\ \nu_c'(P) &= |P(c)| + \int_0^1 |P'(t)| \, dt. \end{split}$$

Ce sont toutes des normes sur $\mathbb{R}[X]$. Comparons les.

- a) Clairement, $N_{\infty} \leq N_{1}$ mais, notant, pour tout $n \in \mathbb{N}^{*}$, $P_{n} = \sum_{0 \leq k < n} X^{k}$, on a $N_{1}(P_{n}) = n$ alors que $N_{\infty}(P_{n}) = 1$: N_{∞} et N_{1} ne sont donc pas équivalentes.
- b) Clairement, $\nu_{\infty} \leq N_1$ mais, notant, pour tout $n \in \mathbb{N}^*$, $Q_n = nX^n (n-1)X^{n-1}$, on a $N_1(Q_n) = 2n-1$ alors que $\nu_{\infty}(Q_n) = 1$ (il convient d'étudier précisément Q_n): ν_{∞} et N_1 ne sont donc pas équivalentes.
- c) N_{∞} et ν_{∞} ne sont pas comparables. En effet, pour tout $n \in \mathbb{N}^*$, $N_{\infty}(P_n) = 1$ et $\nu_{\infty}(P_n) = n$ alors que $N_{\infty}(Q_n) = n$ et $\nu_{\infty}(Q_n) = 1$.
- d) Soit $c \in [0,1]$. Alors v_c' et v_0' sont équivalentes. En effet, $P(c) P(0) = \int_0^c P'(t) dt$,

$$||P(c)| - |P(0)|| \le |P(c) - P(0)| \le \int_0^c |P'(t)| \, dt \le \int_0^1 |P'(t)| \, dt$$

de sorte que

$$\nu'_c(P) \le |P(0)| + 2 \int_0^1 |P'(t)| dt \le 2\nu'_0(P) \text{ et } \nu'_0(P) \le 2\nu'_c(P).$$

e) Comme, pour tout $t \in [0,1], P(t) = P(0) + \int_0^t P'(u) \, du$ et

$$|P(t)| \le |P(0)| + \left| \int_0^t P'(u) \, du \right| \le |P(0)| + \int_0^t |P'(u)| \, du \le |P(0)| + \int_0^1 |P'(u)| \, du,$$

on déduit que $\nu_{\infty}(P) \leq \nu'_0(P)$. Ainsi, $\nu_{\infty} \leq \nu'_0$ mais ν'_0 et ν_{∞} ne sont pas équivalentes. Soit $n \in \mathbb{N}$. Il existe un unique polynôme $T_n \in \mathbb{R}[X]$ tel que, pour tout $\theta \in \mathbb{R}$,

$$T_n(\cos\theta) = \cos(n\theta).$$

En effet, comme $\cos\theta = \frac{1}{2}(e^{i\theta} + e^{-i\theta})$ et $e^{i\theta} = \cos\theta + i\sin\theta$,

$$e^{in\theta} = (\cos\theta + i\sin\theta)^n = \sum_{0 \le k \le n} \binom{n}{k} (\cos\theta)^{n-k} i^k (\sin\theta)^k$$

$$\cos(n\theta) = \frac{1}{2} (e^{in\theta} + e^{-in\theta}) = \sum_{0 \le k \le n} \binom{n}{k} (\cos\theta)^{n-k} \frac{1}{2} \left(1 + (-1)^k\right) i^k (\sin\theta)^k$$

$$= \sum_{0 \le 2l \le n} \binom{n}{2l} (\cos\theta)^{n-2l} (-1)^l (\sin\theta)^{2l}$$

$$= \sum_{0 \le 2l \le n} \binom{n}{2l} (\cos\theta)^{n-2l} (-1)^l (1 - \cos^2\theta)^l.$$

Il en résulte que

$$T_n(X) = \sum_{0 \le 2l \le n} {n \choose 2l} X^{n-2l} (X^2 - 1)^l.$$

Ainsi, $\nu_{\infty}(T_n) = \max_{\theta \in [0, \frac{\pi}{2}]} |\cos(n\theta)| = 1.$

Dérivant l'équation définissant T_n , on obtient $-\sin\theta \, T'_n(\cos\theta) = -n\sin(n\theta)$ pour tout $\theta \in \mathbb{R}$. Il existe donc un unique polynôme $U_{n-1} = \frac{1}{n}T'_n$ tel que,

$$\forall \theta \in \mathbb{R} \setminus \pi \mathbb{Z} \quad U_{n-1}(\cos \theta) = \frac{\sin(n\theta)}{\sin \theta}.$$

D'où $\nu'_0(T_n) = |T_n(0)| + n \int_0^1 |U_{n-1}|$. D'une part, $T_n(0) = \cos(n\frac{\pi}{2})$ vaut 0 si n est impair, $(-1)^{n/2}$ si n est pair. D'autre part, en utilisant le changement de variable $x = \cos \theta$,

$$\int_0^1 |U_{n-1}|(x) dx = \int_0^{\frac{\pi}{2}} |U_{n-1}(\cos \theta)| \sin \theta d\theta = \int_0^{\frac{\pi}{2}} |\sin(n\theta)| d\theta = \frac{1}{n} \int_0^{n\frac{\pi}{2}} |\sin(u)| du$$
$$= \frac{1}{n} \sum_{k=0}^{n-1} \int_{k\frac{\pi}{2}}^{(k+1)\frac{\pi}{2}} |\sin(u)| du = \frac{1}{n} \sum_{k=0}^{n-1} \int_0^{\frac{\pi}{2}} |\sin(u+k\frac{\pi}{2})| du.$$

Or,
$$\int_0^{\frac{\pi}{2}} |\sin(u+k\frac{\pi}{2})| du = \begin{cases} \int_0^{\frac{\pi}{2}} |\sin(u)| du & \text{si } k \text{ est pair} \\ \int_0^{\frac{\pi}{2}} |\cos(u)| du & \text{si } k \text{ est impair} \end{cases} = 1$$
. D'où $\int_0^1 |U_{n-1}| = 1$. En conclusion, $\nu_0'(T_n) \ge n$.

Exercices.

Exercice 1. Soient f et g deux fonctions définies de \mathbb{R} dans \mathbb{R} telles que f(0) = g(0) = 0 et, pour tout $x \in \mathbb{R}^*$,

$$f(x) = \sin\left(\frac{1}{x}\right)$$
 et $g(x) = x\cos\left(\frac{1}{x}\right)$.

Soit $x_0 \in \mathbb{R}$. La fonction f (resp. g) est-elle continue en x_0 ? Justifier.

Les fonctions cos, sin sont continues sur \mathbb{R} et la fonction $\iota : \mathbb{R}^* \ni x \mapsto x^{-1}$ est continue de \mathbb{R}^* dans \mathbb{R}^* . Il résulte de la règle de composition des fonctions continues que, pour tout $x_0 \in \mathbb{R}^*$, f et g sont continues en x_0 .

Montrons que f n'est pas continue en 0. Sinon, notant $x_n=(\frac{\pi}{2}+n\pi)^{-1}$ pour tout $n\in\mathbb{N}$, comme $\lim x_n=0$, on aurait $\lim f(x_n)=f(0)=0$; or, $f(x_n)=\sin(\frac{\pi}{2}+n\pi)=(-1)^n$!

Enfin, g est continue en 0 car $|g(x)| \leq |x|$ pour tout $x \in \mathbb{R}$.

Exercice 2. Le \mathbb{R} -espace vectoriel \mathbb{R}^3 est muni de sa norme $\|\cdot\|_{\infty} : \|(x,y,z)\|_{\infty} = \max\{|x|,|y|,|z|\}$ si $(x,y,z) \in \mathbb{R}^3$. On note :

$$A = \{x, y, z\} \in \mathbb{R}^3 \mid x > 0 \text{ et } x^2 + y^2 + z^3 \le 1\}.$$

Dire et prouver si A est une partie ouverte (resp. fermée, bornée) de $(\mathbb{R}^3,\|\cdot\|_\infty)$.

A n'est pas un fermé de $(\mathbb{R}^3, \|\cdot\|)$. En effet, $p_n = (\frac{1}{n}, 0, 0) \in A$ pour tout $n \in \mathbb{N}^*$ et $(p_n)_{n \in \mathbb{N}^*}$ converge vers $\mathbf{0}_{\mathbb{R}^3} \notin A$.

A n'est pas un ouvert de $(\mathbb{R}^3, \|\cdot\|)$. En effet, $q_n = (1, \frac{1}{n}, 0) \notin A$ pour tout $n \in \mathbb{N}^*$ et $(q_n)_{n \in \mathbb{N}^*}$ converge vers $(1, 0, 0) \in A$.

A n'est pas borné car, pour tout $n \in \mathbb{N}^*$, $(1,0,-n) \in A$ et $\|(1,0,-n)\| = n$.